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ABSTRACT
Our voices can convey many different types of thoughts and intent;
how our voices carry them is often not consciously controlled and as
a consequence, unintended effects may arise that negatively impact
our relationships. Howwe say things is as important as what we say.
This paper presents methodologies for computing a set of physical
properties from sound waves of a speaker’s voice directly, referred
to as acoustic measures. Experiments are designed and conducted to
establish the correlations between physical properties and auditory
measures for human perception of sound waves. Based on these
correlations, a voice coaching app can guide users, in real-time or
deferred retrospective, to modify their speech’s auditory measures,
such as rate of speech, energy level, and intonation, to achieve their
intended communication goals.

CCS CONCEPTS
• Human-centered computing → Mobile computing; • Ap-
plied computing→ Sound andmusic computing; •Hardware
→ Sound-based input / output; • Information systems →
Data mining.
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1 INTRODUCTION
Our voices can convey many different types of thoughts and intent;
in many cases, we do not consciously control how our voices carry
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them and as a consequence, we fail to achieve the communication
results we wanted, and unintended effects may arise that negatively
impact our relationships. To effectively communicate, how we say
things is as important as what we say.

The challenges in voice communication are often amplified in
stressful situations such as public speaking, class presentations,
business meetings, emergency situations, or conversations related
to healthcare, among others. These challenges extend to caregivers
of persons on the spectrum of neurological disorders such as Autism,
Down’s syndrome, and others, when their voices convey unin-
tended emotions to persons under their care, causing, in extreme
cases, sensory overload in the listener.

While there is extensive scientific and popular research related
to the ideal level of auditory properties – inflection, rate of speech,
tone, volume, modulation, and other parameters – or the inferred
attributes such as the speaker’s emotional state, there is not an
easy way for an individual to assess these auditory properties and
inferred attributes in real-time. Even after a verbal communication
session, it is hard to objectively reflect and improve the way in
which the individual communicates with others.

Of particular importance is the preservation of individual privacy.
Most existing technologies used for voice coaching rely on speech-
to-text and subsequent analysis of the transcribed text. Other tech-
nologies rely on the analysis of video recordings for facial and body
language expressions. These are intrusive and in some applications
that involve interactions with patients or with underage individu-
als, existing privacy laws would limit or prohibit the use of speech
to text technologies. Furthermore, rich speech information is lost
in the conversion; sarcastic speech, for example, often means the
opposite of what is literally said.

The purpose of the work presented in this paper is to help individ-
uals improve the way they communicate. We compute the acoustic
properties of sound waves of a speaker’s voice, and present them
in terms of auditory measures such as the speaking rate, inflection,
and energy level. The computation of these acoustic properties is
built into a smart phone app that enables both live and deferred
feedback so the speaker can take early intervention while speaking,
and improve their speech over time. The analysis methods and
applications are patent pending by Giving Tech Labs.

Our contributions presented in this paper are:

(1) a set of mathematical analysis of sound waves of a speaker’s
voice, without the use of speech-to-text, to calculate voice
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characteristics such as speed of speech, inflection, and energy
level

(2) design and execution of tests to certify the correctness and
robustness of the implementation

(3) an app that incorporate these computations on smart phones
for providing real-time and deferred voice-coaching to indi-
viduals

The rest of this paper is organized as follows: Section 2 provides
an overview on topics relevant to our application of voice signal
analysis and auditory perception of speech. Section 3 introduces
the acoustic measures used and our methods for computing them.
Section 4 presents the design of experiments and reports on the
results. Section 5 introduces the application we built for smart
phones. Lastly, Section 6 concludes and outlines our plan for future
work.

2 DOMAIN SUBJECT BACKGROUND
The domain subject of the applied data science work presented
in this paper belongs to the area of voice signal prosodic analysis.
Specifically, we focus on the acoustic measures that can be com-
puted objectively and directly from a sound. Acoustic measures are
distinguished from auditory measures that describe human percep-
tion of a sound. The two types of measures are highly correlated,
as outlined in Table 1 (taken from [17] page 30 with our additions).

Table 1: Correlations between acoustic (physical) measures
and auditory (perceptual) measures of voice signal.

acoustic measures auditory measures
fundamental frequency (denoted as F0) pitch

intensity loudness
spectral characteristics timbre

onset/offset time timing, speaking rate
phase difference in binaural hearing location
variation of measures over time units intonation

We should note that the correlations between acoustic measures
and auditory measures as listed in Table 1 are not linear, nor one-
to-one. There exist many more acoustic properties that correlate
to auditory perceptions, often multiple acoustic features are used
together as features in machine learning systems for inferring dif-
ferent auditory properties. These have been researched in the fields
of signal processing and spoken language understanding.

For the purpose of this paper, we focus on the computation of the
acoustic measures in Table 1 to serve a Voice Coaching Application.
For voice coaching, acoustic measures need to be computed in
real time from the voice signal directly. Then correlations with
auditory measures need to be established, based on which, the
computed acoustic measures can be compared against a reference
range of auditory measures. We describe our methodologies and
experiments on computing the acoustic measures and determining
the correlations with auditory measures. For instance, to coach
on speaking rate, duration of speech units are computed, mapped
to speaking rate, and compared to "ideal speaking rate" for the
intended speaking effect.

2.1 Auditory Measures of Human Voices
Auditory measures are studied as part of intonation system of a lan-
guage [16]. Desired speaking styles differ for the audience groups,
the speaking context (presentation vs. one-on-one dialog), speak-
ing distance (large public presentation vs. small group discussion),
speaker demographics, and so on. The relationships between these
factors, the impact they have on how a voice signal is perceived,
and the intended effect of the speech are complex, some studies
treat one individual auditory measure and some impact factors
while others conduct comprehensive studies on more factors. For
instance, Sorokowski et. al. [36] studies relations between speak-
ers’ modulation of their speaking fundamental frequencies and
the perceived authority on the subject matter the speakers covey.
Rodero [32] analyzed the impact of radio announcers’ speaking
rate has on the perception of subjective assessment in the news.
Yuan et al. [39] studies the relation between speaking rate, speaker
demographics, and speaking topics in conversations.

2.2 Acoustic Measures from Voice Signals
Acoustic measures and their underlining computational features
from voice signals have been utilized for detecting and classifying
various properties, such as speaker personality traits (age, gen-
der, personality) [28, 34, 35]), speaker state (affection, intoxication,
stress) [2, 7, 25], acoustic events carried within a voice clip [38],
emotions carried in real-life conversations [8], and so on.

Acoustic measures have been researched and studied in the fields
of signal processing [30], speech recognition [17], computational
linguistics, etc., for many decades and still gain active research
attention today as the number of new application scenarios and
voice devices grows even more abundantly. For example, research
and development for accurate estimation of fundamental frequency
(F0) dates back to the 90’s [3] and earlier, and continue to be topics
of research interests [5, 27].

Tools and software libraries for estimating acoustic measures
have also been available [4] for decades and continue to emerge [24].
However, our application scenarios for voice coaching require the
computation of the acoustic measures on a smart phone or watch
without pre-trained models. As such, we need to implement real
time estimation of acoustic measures, including our own version
of F0 estimator in C, even though F0 has been studied for years by
researchers.

2.3 Rate of Speech
Algorithms for estimating rate of speech are utilized in speech recog-
nition systems and motivated by the observation in the mid 90’s
that strong correlations exist between the performance of speech
recognition systems and deviation of test data from the average
rate of speech in training data [26]. As such many algorithms make
estimation during or after some recognition process, usually in-
terwoven with the speech recognition process and utilizing some
learner to detect the speech units. Other algorithms rely on train-
ing data that are phonetically transcribed, such as TIMIT [13]. A
third types of algorithms usually operate on the amplitude or spec-
tral characteristics and their moments or rate of change of various
mathematical properties.

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2756



The measure of speaking rate often used in the general public
is "words per minute". However, this measure is flawed in a few
ways. Firstly, it has coarse granularity, making it unstable for short
speech samples. Also, it produces different results depending on
the vernacular, dialect, or language used – speech containing many
longer words could have low wpm even if spoken quickly. Finally,
it requires speech-to-text processing, which is invasive of privacy,
and potentially poses limitations in cases of serving the needs of
teachers, caregivers, and parents.

Finer speech units are syllables and phonemes. The syllable is a
well defined phonological unit in a given language, however, listen-
ers may not agree on the number of syllables heard. Furthermore,
not all syllables will be phonetically realized in faster speech than
in slow articulation. Our focus in this paper is on counting the phys-
ically observable phonetic units (phonemes) over time as a proxy for
the heard speaking rate.

Previous research has shown that there is a significant correla-
tion between the maximum spectral transition positions and the
manually selected phoneme boundaries [12]. This, in turn, suggests
that there is an important relation between the commonly accepted
phoneme boundaries and the perceptual critical points [10]. An
application for helping stuttering patients was built based on the
computation spectrum transition maximum [1]. We will present
our implementation of spectrum transition measure augmented
with voice activity detection in Section 3.1.

2.4 Voice Activity Detection
Voice Activity Detection (VAD) algorithms determine what parts
of an audio signal contain human speech. Speech analytic systems
employ VAD to help improve analysis accuracy, and thanks to the
progress in speech recognition, there are many VAD algorithms,
among which, RNN VADs are lauded as the most accurate. How-
ever, other simpler ’baseline’ VADs tend to work nearly as well
in signal conditions without large amounts of noise [37]. VAD for
real-time applications needs to be effective while being lightweight
and robust.

WebRTC [29] is an open-source project that provides robust
and efficient protocols for real time audio and video communica-
tion in web browsers and mobile applications. Alongside its APIs
for communication protocols, WebRTC provides generally useful
algorithms for audio and video processing, including a VAD. We-
bRTC VAD is implemented with a Gaussian Mixture model, and is
commonly used as a starting point for speech analysis applications.

3 ACOUSTIC PROCESSING AND
MEASUREMENT

The steps to compute acoustic measures are depicted in Figure 1.
The input to the processing and computation is a sound file in a stan-
dard audio file format recorded on conventional devices. Off-line
data used for testing and experimentation consists of benchmark
data sets (we describe two in Section 4). On-line data for real-time
computation is recorded with the standard recording functionalities
on mobile devices. The output consists of aggregated acoustic mea-
sures that are not personally identifiable. The following acoustic
processing and measures are presented in detail in this section:

• voice activity detection (VAD)

• spectral transition measure (STM)
• signal intensity/energy
• variations of acoustic measures including F0, zero-crossing
rate (ZCR)

The set up of our audio signal processing are described in Figure 2.
Here, we follow a typical process of performing computations on
32 ms frames of the audio values. We then compute on overlapping
frames as we look at frames shifted by 10 ms intervals [17, 30]. This
overlap is necessary as it ensures that we do not lose information
at the edges of frames.

Figure 1: Processing steps for computing acoustic measures.

Figure 2: Audio signal processing frame set up.

Before computing any acoustic measures on speech, we first
apply a VAD to parse out what parts of an audio file or stream
to actually analyze. We choose WebRTC VAD to keep complexity
low for initial release. However, after applying the WebRTC VAD
to live user audio, we observe that, although its performance is
good in identifying the beginning and end of spoken segments, it is
too sensitive to quiet noise at the beginning of detection before it
adapts to the recording environment, often producing false positives
during these quiet unspoken sections.

Thus, we augment theWebRTCVAD to remove from the analysis
any audio segments which are below a reasonable intensity level
for speech. The modified WebRTC VAD provides effective speech
detection on our iPhone recording hardware. Figure 3 depicts an
example of VAD result.

3.1 Speech Rate with Spectral Transition
Measure (STM)

Since we want to estimate phoneme count through analyzing spec-
tral properties of voice signal, we implemented the spectral tran-
sition measure as outlined in [10]. It can be interpreted as the
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Figure 3: VAD example, green and red depict the beginning
and end of voice chunks respectively.

magnitude of the spectral rate of change:

𝑆𝑇𝑀 (𝑚) =
𝐷∑
𝑖=1

𝑎2
𝑖 (𝑚)/𝐷

where 𝐷 is the dimension of the spectral feature vector, and 𝑎𝑖 is
the regression coefficient, or the rate of change of the MFCC:

𝑎𝑖 (𝑚) =
∑𝐼
𝑛=−𝐼 𝑀𝐹𝐶𝐶𝑖 (𝑚 + 𝑛) ∗ 𝑛∑𝐼

𝑛=−𝐼 𝑛
2

where 𝐼 represents the number of frames on each side of the cur-
rent frame used in the computation of regression coefficients. Our
computation uses 𝐼 = 2 for a 10ms frame step.

MFCCs are meant to approximately represent the human au-
ditory system’s response, and are commonly used as features in
speech recognition [17].

Once we compute the STM for each frame, phoneme boundary
is detected based on STM in relation to the STM of adjacent frames.
Peaks in STM value are candidates for phoneme boundaries, and
they are identified by selecting frameswhich have STM value higher
than both of neighbors. These peaks are then filtered down to
those that are most likely to be phone boundaries by a proprietary
method. The remaining filtered STM peaks can be considered to be
equivalent to phoneme boundaries.

Using the count of estimated phoneme boundaries computed
for a segment of speech, we find the speaking rate of that segment
by dividing the amount of computed phonemes by the duration in
seconds of the speech segment. This leaves us with a speech rate
measured in phonemes per second.

Since our application is exposed to audio input that contains
segments of both user speech as well as background noise, we
collect STM peaks only in segments that are determined as con-
taining voice by our VAD. Likewise the duration of speech used in
the denominator of speaking rate is pared down based on spoken
segments found in the audio, while leaving in short unspoken seg-
ments which naturally comprise some phonemes; this is discussed
further in (Section 4.2).

3.2 Loudness
An important voice coaching topic is controlling the intensity of
speech in order to not speak too loudly or too softly for a given
context. Often, loudness is used to refer to the auditory measure for
volume of a sound, while intensity of a sound refers to an acoustic
measure of the power carried by a sound wave.

There are several acoustic measures of sound intensity. One is
Root Mean Square Amplitude (RMS), defined as the square root
of the sum of the squared magnitudes of a signal divided by the
duration of the signal:

𝑅𝑀𝑆 (𝑥) = ( 1
𝑁

𝑁∑
0
𝑥 (𝑡)2)

1
2

RMS is a good initial candidate for approximating loudness because
of its simplicity and clear relationship to the perception of spoken
volume. After conversion to user-legible scale (dB), it provides a
rough but usable proxy for speaker loudness [11]. This is our current
implementation in the beta version of the coaching application,
although there are major limitations to this approach. We now
discuss several issues which inform our future work in improving
loudness estimation in our application.

First, the subjective perception of a loud or quiet sound is not
easily derivable from the physical signal intensity. Converting in-
tensity to a dB scale is a rough approximation, but there are many
other methods of measuring loudness of a sound, and care should
be taken to measure loudness in a way which is most suited to a
specific application [23].

Secondly, there is the distance dependence problem. The recorded
intensity of a sound will greatly change depending on the distance
between the source and the recording device. With our current
scheme, users of our application are instructed to place their phone
a particular distance from their mouth for every session. This can
be resolved by finding speaker distance first [14], and then com-
puting intensity at the source according to the inverse square law
to achieve consistent intensity readings regardless of how far a
speaker is from the phone.

Finally, there is the problem of unknown microphone hardware
and preprocessing of audio input. The intensity of the digital sig-
nal may not correspond well to the physical sound intensity due
to unknowns in the recording workflow. To get past this issue,
experiments must be done for every hardware setup we plan on
releasing to, comparing the results between the app calculation and
a physical sound pressure level meter.

Since our current implementation in the app for measuring
speaker loudness is temporary with known issues, we leave it as
an area of future improvement and do not include experiments for
validation like with the other voice analysis features discussed.

3.3 Intonation with Variations in Acoustic
Measures

Besides the speed and energy of speech, there remains a great
wealth of interesting suprasegmental features with rich implica-
tions. In making our application, we required some measure of
tonal variation to coach users to speak less monotonously or help
them reign back excessively polytonous speech. We call this speech
feature intonation. The challenge of intonation is providing a quanti-
tative measurement of this characteristic. In our search, we decided
on straightforward criteria for such a measurement: (1) it must be
low when evaluated on boring, monotonous speech, (2) it needs to
increase when the speech is more tonal, and (3) it needs to be high
when presented with exciting and lively speech.

While zero-crossing-rate (ZCR) is typically used in voice activity
detection implementations [9], if we isolate only the voiced portions
and look at the behavior of ZCR, we see that it provides meaning-
ful acoustic information that can distinguish the two emotional
categories. (See Figure 4). This suggests that it is a good candidate
measurement for intonation which we experiment with later.
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Figure 4: Comparison of Zero-Crossing-Rate for Intense
Anger (anger2) and calm (calm2) on voiced portions

In terms of calculation, our ZCR for a length T, substituted in as
our frame size, is computed as follows:

𝑧𝑐𝑟 =
1

𝑇 − 1

𝑇−1∑
𝑡=1

1R<0 (𝑠𝑡𝑠𝑡−1)

Fundamental frequency (F0) is another candidate metric for into-
nation we will experiment with, whose relationship with tonality is
more intuitive both. We estimate F0 by maximizing the lag for au-
tocorrelation to determine the wave’s period, where the correlation
for lag k is:

𝑟𝑘 =

∑𝑁−𝑘
𝑖=1 (𝑌𝑖 − 𝑌 ) (𝑌𝑖+𝑘 − 𝑌 )∑𝑁

𝑖=1 (𝑌𝑖 − 𝑌 )2

Through experimentation in Section 4.4, we find that variance and
interquartile range of both ZCR and F0 are insightful measure-
ments that satisfy our criteria for a quantitative measurement of
intonation.

4 EXPERIMENTATION
4.1 Datasets for Experimentation
The TIMIT Speech Corpus [13] provides phonemically and lexically
transcribed speech of American English speakers of different sexes
and dialects. Each transcribed element has been delineated in time.
It contains a total of 6300 sentences, 10 sentences spoken by each
of 630 speakers from 8 major dialect regions of the United States.
Its text prompts consist of phonetically-compact sentences and
phonetically-diverse sentences. The corpus is a very popular bench-
mark test set for phone recognition [31]. We mainly utilize the time
delineated phonemes for testing our computation of speaking rate.

The Ryerson Audio-Visual Database of Emotional Speech and
Song (RAVDESS) [22] is a validated multimodal database of emo-
tional speech and song. It consists of 7356 clips, gender balanced
with 24 professional actors, each performing 104 unique vocaliza-
tions with emotions of calm, happy, sad, angry, fearful, surprise,
and disgust, at two levels of emotional intensity, normal and strong.
(Notice that the neutral emotion has only one emotional intensity.)
Researchers use RAVDESS for emotion recognition from audio-
visual data. We use the audio signal and the emotion tagging for
intonation testing.

4.2 Duration of Intraspeech Gaps
In order to calculate speaking speed, we take the number of phonemes
spoken and divide by the amount of time taken for speaking. The
STM algorithm (Section 3.1) gives us a solid estimation for the num-
ber of phonemes spoken in a speech segment. However, finding the
total duration of speech to use as the denominator is more nuanced.
There are occasional large noticeable pauses in speech that should

Figure 5: Intraspeech gaps (green) and interspeech pauses
(red)

not be included in the total duration, there are also natural gaps that
occur between phonemes as part of words or sentences. We refer to
them as interspeech pauses and intraspeech gaps, respectively. If an
audio input is masked by VAD to determine the total spoken time,
then we would underestimate spoken time by removing the small
intraspeech gaps. On the other hand if we leave everything in then
we will count large interspeech pauses and vastly overestimate.

This experiment is to determine the statistical attributes of nor-
mal intraspeech gaps so we can distinguish them from the larger
interspeech gaps. We apply our VAD to TIMIT data set to chunk up
all the recordings into voiced and unvoiced sections. After chunk-
ing up our signals into spoken and unvoiced sections, we discard
all the unvoiced segments that were at the very start or end of the
recordings. Then, all remaining unvoiced sections are intraspeech
gaps. Statistical analysis on the time durations of the intraspeech
gaps then should help us in distinguishing kinds of gaps in speech.

Of the 6300 TIMIT audio files, 30708 intraspeech unvoiced seg-
ments were detected and analyzed. Our experiment found that the
mean duration of these segments was 0.0489 seconds, and 99.7%
of intraspeech gaps are shorter than 0.221 seconds. For the
purpose of determining speaking time in the voice-coaching app,
we can count all speech gaps shorter than 0.221 seconds as being
part of continuous speech.

4.3 Robustness of STM as Phoneme count
estimator

Verifying the accuracy of our STM calculation in estimating how
many phonemes are spoken in a given clip will allow us to have
confidence in both the VAD which undergirds it, and the estimation
for rate of speech we built on top of it. This experiment is meant to
both find a constant conversion between calculated STM peak count
and phoneme count, and illustrate the strength of this relationship.

We compare the results of our STM peak counting calculation to
the known phonemes count in a given speech segment. From the
literature, we expect a one-to-one ratio of STM to phoneme [10].
We seek show to show a similar correlation between our STM
result and known phoneme amount in a given sentence. To test the
strength of the correlation and simultaneously find a constant to
convert between STM count and phoneme count, a linear regression
is performed using individual TIMIT clips as datapoints along the
two dimensions of STM count and phoneme count.

TIMIT has a variety of different speakers available which is good
for testing the robustness of our STM results across changes in
Speaker voice. We use a modified TIMIT corpus for our experiment
that has each audio file padded to the same length with equivalent
background noise in order to isolate STM count as the sole inde-
pendent variable. We also want to validate our STM results across
different recording environments with different amounts of noise.
To achieve this, we make additional versions of our padded TIMIT
with different amounts and types of noise superimposed on the

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2759



audio, following the example of existing voice analysis evaluation
research [6]. We used both white noise and noise collected from
our office at signal to noise ratios (SNR) between 20db to -10db.

A linear regression on the padded TIMIT dataset yielded a con-
version of 0.9210 STM peaks per phoneme, with an adjusted r2
value of 0.840 for this model. Compared to the theoretical one-to-
one ratio of STMpeaks to phonemes, our calculated STMpeak count
appears to be a bit lower than expected. Some STM peaks are not
found, which is to be expected from our conservative methodology
of only classifying peaks if they are certainly phoneme boundaries.

Also worth mentioning is that there are a handful of outlier
datapoints (𝑛 ≈ 120/6300) that have much higher STM peak counts
than the rest of the data; this effect is illustrated in Figure 6(a). These
outliers likely arise from recordings which have a particular kind
of background noise that triggers our VAD for large sections even
when participants are not speaking, for instance someone quietly
talking in the background of a recording. Such an effect would
cause our algorithm to severely overcount STM peaks throughout
the clip. Despite the outlier clips, this experiment still validates the
STM as being highly correlated with phoneme count with a ratio
near one-to-one.

How well does the correlation hold up in environments with
different amounts of noise? In a white noise environment, we see a
large drop off in correlation strength with a signal to noise ratio
(SNR) of less than 5db, as seen by a reduction in standard error,
RMSE, and adjusted r2 value. In the simulated office noise environ-
ment, the drop off comes earlier with poor results coming from a
10db SNR (Table 2). Additionally, in office noise, which has office
babble scattered throughout, we see more of the outliers like de-
scribed above, while white noise reduces precision of the regression
uniformly. Both effects are illustrated in Figure 6(c) and 6(b).

For now, we can safely use our STM peak count to approximate
phoneme count within medium-high (>10db) SNR environments
in pursuit of estimating rate of speech for an audio clip, relying on
our empirically determined conversion of 0.9210 STM peaks per
phoneme. According to test users, this parameter produces qualita-
tively good results in measuring rate of speech on the application.

4.4 Correlations between Acoustic Variations
and Intonation

To find a way of computationally estimating speech intonation, we
must find a correlation between one or more candidate measures
(discussed in 3.3) and the auditory perception of intonation. How-
ever, there is no speech recording dataset labeled with intonation
levels. We get around this by taking emotionality of speech as a
proxy for intonation, since highly emotional speech should have
more intonation, and different spoken emotions intuitively have
different intonation levels. The RAVDESS dataset is analyzed in this
experiment; it has multiple categories and intensities of emotional
speech.

First, we map the emotional categories onto an intonation scale.
By definition, the neutral clips in the dataset are a good baseline
for boring, monotonous speech. Some emotions, such as anger and
happiness, are decidedly more tonal than our baseline, but other
categories such as calm or sadness are less apparent. By listening to
the clips, as well as envisioning the common expressions of these

(a) without added noise

(b) white noise, 5db SNR (c) office noise, 15db SNR

Figure 6: STM:phoneme regression plots

emotions in speech, we placed neutral, calm1, calm2, and sad1
all in the lower intonation bracket, while the remaining emotion
categories we consider substantially tonal. Additionally, we expect
that all the level two versions of emotions will be higher on the
intonation scale than the lower intensity variants, e.g. anger2 will
have higher intonation than anger1.

Note that sad1 is the only emotional group not considered sub-
stantially tonal, even while sad2 is included. This is because we
found sad1 tends to manifest as despondent and low-energy speech,
but the more intense version of sad involves the fluctuations in
tone associated with sobbing.

To determine if our candidate intonation measures reflect our
hypothesized emotion groupings, we computed the Kruskal-Wallis
H test [20] for each candidate measure, comparing the neutral cate-
gory to each of the other emotion groups. Kruskal-Wallis tests for
stochastic dominance; the existence of stochastic dominance would
illustrate that this other emotion should not be grouped together
with monotonous, neutral speech, and a lack-thereof would corrob-
orate that it could be grouped together with this category. Of course,
there is no proscribed definition for intonation, so our different
candidate metrics for intonation may not correspond perfectly to
the subjective perception of it. However, a clearly errant grouping
would indicate that this metric is not usable.

Looking first at the interquartile-range (IQR) of ZCR in Table
3, comparing neutral with both calm emotions and the weaker
version of sad results in H values lower than 6.635 (in bold), which
corresponds to an alpha value of 0.01 with one degree of freedom
(d.f.). This indicates that we cannot reject H0 that neither group
stochastically dominates the other. Thus we can infer that a low-
intonation group exists with neutral, calm, and sad1.

Looking at the rest of the results comparing neutral with the
other emotions, each of the tests result in a much higher H-value
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Table 2: STM:Phoneme regression statistics for different amounts and types of added noise

No added noise 20db SNR 15db SNR 10db SNR 5db SNR 0db SNR -5db SNR -10db SNR

— white office white office white office white office white office white office white office
Phoneme Coef. 0.9210 1.0180 0.9774 1.7810 * 0.9976 0.7146 1.1677 0.7443 1.5643 0.8079 1.8449 1.4934 3.2413 2.6489 3.6732
adjusted r2 0.840 0.802 0.849 0.639 * 0.740 0.691 0.612 0.724 0.568 0.504 0.595 0.488 0.819 0.652 0.888
Standard Error 0.005 0.006 0.005 0.017 * 0.007 0.006 0.012 0.006 0.017 0.010 0.019 0.019 0.019 0.024 0.016
RMSE 16.02 20.12 16.40 53.35 * 23.53 19.04 37.05 18.31 54.376 31.94 60.658 60.94 60.737 77.05 51.88
Skew 6.523 3.694 4.149 0.882 * 3.216 2.289 1.913 2.356 0.841 2.863 0.449 0.803 -0.911 -0.381 -1.054

* Further inspection is needed for this setting. It produces results out of step with the general trend and may have been run with the wrong parameters.

that rejects H0, indicating that they can be grouped separately as
high-intonation (emotional) speech. Altogether, the low and high
intonation split matches our earlier hypothesis.

Applying further analysis with aWelch (unequal variance) T-Test
to compare these two groups, it indicates that the mean ZCR IQR for
high-intonation is 0.0133 higher than that of low-intonation, with
t=-20.95 and p=1.84e-84. This difference is captured well by Figure
7, where the grayed boxes are members of the low-intonation group.

Figure 7: Comparison of Zero-Crossing-Rate Interquartile-
Range for Emotion Categories (Shaded are low-intonation
group)

Figure 8: Comparison of Zero-Crossing-Rate Variance for
Emotion Categories (Shaded are low-intonation group)

Figure 7 also demonstrates how the IQR of ZCR heuristic satisfies
another criteria for our intonation measurement. By comparing the
IQR of ZCR within each of the emotions (eg. angry 1 vs. angry 2,

excluding the "non-emotional" categories neutral and calm), we see
that the more intense version of the emotion results in a larger IQR.
This indicates that our heuristic successfully captures the influx of
intonation when a speaker increases the display of their emotions;
a measurement of the IQR of ZCR acts as a useful proxy for the
intonation level of speech. From the Kruksal results in Table 3, we
can verify that these mean differences are statistically significant by
referencing the H-values from the Kruskal test for each emotional
pair. Here, the H-values are all easily above 6.635 (for alpha=0.01,
d.f.=1), corroborating our conclusions.

Statistical variance instead of IQR yields very similar results. Us-
ing the same procedure, we plot the results to decide our groups and
apply Kruskal-Wallis to decide a low-intonation vs. high-intonation
grouping. Again, these results gave us the same groups, but this
time the grouping is not as robust. For IQR, all pair-wise Kruskal
comparisons in the low-energy group yield high p-values, but for
variance of ZCR, Calm2 against Neutral narrowly fails to reject
H0. From Figure 8, we can see that calm2 has lower variance mea-
surements. As a measure of intonation, this is valid as enforcing
calmness in speech can result in significantly more monotony than
neutral speech, explaining a decreased H-value (indicating different
distributions) when applying Kruskal. Once again though, the com-
parison of low-energy to high-energy emotion satisfies the criteria
that the lower-intonation group results in lower quantitative mean.

Additionally, variance measurements also satisfy the criteria for
comparisons between varying intensities of the same emotion as
visible in 8. From these results, we can conclude that both IQR
and Variance of Zero-Crossing Rate are powerful measurements to
quantify the intonation of speech.

Two of the other metrics that we tested were IQR and variance
of F0. See Figure 9. For both of these, Kruskal-Wallis resulted in
a worse group clustering than ZCR, as it could not as confidently
distinguish fearful and disgust from neutral for both IQR and vari-
ance. Despite this, we still see a trend otherwise reminiscent of that
described in our criteria. Low emotions remain on the low spectrum
and many pairwise comparisons within emotions are successful.
Overall, variation of F0 may be useful as an intonation measure in
conjunction with ZCR, but alone its results do not strongly satisfy
our criteria.

5 VOICE COACHING APPLICATION
Our voice coaching application is Coach Ana. See Figure 10. Coach
Ana integrates all the previously mentioned voice analysis into a
single mobile service which provides live voice coaching and reflec-
tive speech analysis. It seeks to help individuals match their speed,
intensity, and intonation of their speech to their speaking goals.
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Table 3: Pairwise Kruskal Analysis of Interquartile Range of Zero-Crossing Rate
Emotions have (1) normal and (2) strong versions except neutral

Neutral Calm Happy Sad Angry Fearful Disgust Surprise

1 2 1 2 1 2 1 2 1 2 1 2 1 2
Neutral — 3.528 1.671 17.497 93.564 0.006 15.268 100.606 134.947 41.948 118.838 43.570 80.395 31.939 90.116

Calm 1 3.528 — 0.154 32.067 102.122 2.483 26.663 107.573 131.905 54.503 119.585 55.681 89.279 44.160 97.643
2 1.671 0.154 — 24.883 94.967 1.205 21.116 100.720 128.446 48.350 115.562 49.312 82.494 37.906 90.354

Happy 1 17.497 32.067 24.883 — 59.318 14.667 0.154 70.677 128.908 15.127 103.416 16.603 55.057 7.103 57.808
2 93.564 102.122 94.967 59.318 — 81.071 37.979 1.752 50.618 7.694 26.572 7.934 2.811 20.123 1.288

Sad 1 0.006 2.483 1.205 14.667 81.071 — 13.075 89.241 124.705 37.558 107.985 37.828 73.385 28.273 80.347
2 15.268 26.663 21.116 0.154 37.979 13.075 — 48.550 104.497 9.075 79.309 9.334 40.914 3.407 42.304

Angry 1 100.606 107.573 100.720 70.677 1.752 89.241 48.550 — 33.432 14.405 14.490 13.759 0.376 29.411 0.006
2 134.947 131.905 128.446 128.908 50.618 124.705 104.497 33.432 — 64.769 4.195 63.571 17.532 86.933 24.639

Fearful 1 41.948 54.503 48.350 15.127 7.694 37.558 9.075 14.405 64.769 — 42.487 0.002 14.081 1.911 12.066
2 118.838 119.585 115.562 103.416 26.572 107.985 79.309 14.490 4.195 42.487 — 41.862 6.238 64.301 10.822

Disgust 1 43.570 55.681 49.312 16.603 7.934 37.828 9.334 13.759 63.571 0.002 41.862 — 13.090 2.184 11.952
2 80.395 89.279 82.494 55.057 2.811 73.385 40.914 0.376 17.532 14.081 6.238 13.090 — 25.410 0.138

Surprised 1 31.939 44.160 37.906 7.103 20.123 28.273 3.407 29.411 86.933 1.911 64.301 2.184 25.410 — 23.660
2 90.116 97.643 90.354 57.808 1.288 80.347 42.304 0.006 24.639 12.066 10.822 11.952 0.138 23.660 —

(a) IQR (b) Variance

Figure 9: Variation Measures of Fundamental Frequency (F0
in Hz, shading of same groups from ZCR)

The application is designed for speech practice and for providing
instantaneous feedback for real world speaking scenarios.

Different goals, audiences, and contexts for speaking will change
what the appropriate speed intensity and intonation should be.
Coach Ana particularizes the voice coaching for four different
speech intentions, four different classes of audiences, and six speech
environments, to give individuals personalized coaching for the
specific kind of speaking they wish to improve. Including all combi-
nations there are 96 speaking contexts. To find the target speaking
affect, for example, "ideal speaking rate for teaching an elementary
class", we collected findings from a diverse set of analyses and re-
search relating to factors impacting perception [15, 18, 19, 21, 32,
33, 39],

Once a user has selected their speech context options, they can
enter live coaching mode. In live coaching mode, the user is served
a dashboard which displays their current speaking speed, intensity,
and intonation; alongside goal values for each of these measures
that they are to strive for during the speech. Speech metrics are
updated every five seconds.

Aside from live coaching, Coach Ana also allows users to look
back on their past sessions to get in depth analysis about a particular
session or to visualize trends and track their long-term progress.
See Figure 10(c).

(a) audience selection (b) live coaching (c) result presentation

Figure 10: Screenshots of the application.

Coach Ana has been on TestFlight since September 2019 for beta
testing on iOS and watchOS devices, and is scheduled to release to
the public in March 2020. The computation of acoustic measures is
device independent and an Android version of the application is
planned for after the iOS release.

6 CONCLUSIONS AND FUTUREWORK
This paper presents a framework for computing the acoustic mea-
sures of a sound or voice file, and for conducting experiments to
find the relationships between the acoustic measures to auditory
measures. An application is built for smartphones that provides
real-time voice coaching to the speaker based on auditory measures
inferred from acoustic measures. All computations are carried out
on the users’ mobile device without transmitting the contents of
the speech utterance or sound signals off of the users’ device.

We identified some ideas to experiment with for augmenting and
improving the computations of the acoustic measures, including:

(1) improve voice activity detection with the state of the art
LSTM-based VAD [37]

(2) compute loudness independently of speaker distance using
speaker distance estimation [14]

Applied Data Science Track Paper  KDD '20, August 23–27, 2020, Virtual Event, USA

2762



(3) research and improve loudness measure for our applica-
tion [23]

(4) discover more precise measure of intonation by exploring
combinations of vocal features

Building on top of the acoustic measures we developed in this
paper, more auditory measures can be further investigated and
developed into the app to provide additional voice coaching func-
tionality. Deeper experiments and analyses can be conducted on
auditory properties such as:

• perceived speaker emotion
• elicited audience emotion
• intonation modulation

Another substantive improvement to our application Coach Ana
is to conduct the acoustic analysis on continuous stream rather than
once every 5 seconds. Implementing this involves decreasing the
time between analysis while maintaining a timewindow sufficiently
large for STM computation to be coherently analyzed. With some
optimization, we conjecture that computing every second is possible
using a rolling 10 second window of audio signal.
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